cheapsdo2.0/src/main.rs

203 lines
5.7 KiB
Rust

#![deny(unsafe_code)]
#![no_std]
#![no_main]
use defmt_rtt as _; // global logger
use panic_probe as _;
use stm32f1xx_hal as _;
use core::sync::atomic::{AtomicU32, Ordering};
use cortex_m_rt::entry;
use embedded_hal::digital::v2::OutputPin;
use stm32f1xx_hal::{
delay::Delay,
pac,
pac::TIM1,
pac::TIM2,
prelude::*,
rcc::Enable,
rcc::Reset,
timer::{Tim3NoRemap, Timer},
};
// same panicking *behavior* as `panic-probe` but doesn't print a panic message
// this prevents the panic message being printed *twice* when `defmt::panic` is invoked
#[defmt::panic_handler]
fn panic() -> ! {
cortex_m::asm::udf()
}
static COUNT: AtomicU32 = AtomicU32::new(0);
defmt::timestamp!("{=u32}", COUNT.fetch_add(1, Ordering::Relaxed));
/// Terminates the application and makes `probe-run` exit with exit-code = 0
pub fn exit() -> ! {
loop {
cortex_m::asm::bkpt();
}
}
const target_freq: f64 = 10.0f64;
#[entry]
fn main() -> ! {
// Get access to the core peripherals from the cortex-m crate
let cp = cortex_m::Peripherals::take().unwrap();
// Get access to the device specific peripherals from the peripheral access crate
let dp = pac::Peripherals::take().unwrap();
// Take ownership over the raw flash and rcc devices and convert them into the corresponding
// HAL structs
let mut flash = dp.FLASH.constrain();
let mut rcc = dp.RCC.constrain();
let clocks = rcc
.cfgr
.use_hse(8.mhz())
.sysclk(48.mhz())
.pclk1(24.mhz())
.freeze(&mut flash.acr);
// Freeze the configuration of all the clocks in the system and store the frozen frequencies in
// `clocks`
//let clocks = rcc.cfgr.freeze(&mut flash.acr);
// Acquire the GPIOC peripheral
let mut gpioc = dp.GPIOC.split(&mut rcc.apb2);
// Configure gpio C pin 13 as a push-pull output. The `crh` register is passed to the function
// in order to configure the port. For pins 0-7, crl should be passed instead.
let mut led = gpioc.pc13.into_push_pull_output(&mut gpioc.crh);
let mut afio = dp.AFIO.constrain(&mut rcc.apb2);
let mut gpioa = dp.GPIOA.split(&mut rcc.apb2);
let pwm_pin = gpioa.pa6.into_alternate_push_pull(&mut gpioa.crl);
let mut pwm = Timer::tim3(dp.TIM3, &clocks, &mut rcc.apb1)
.pwm::<Tim3NoRemap, _, _, _>(pwm_pin, &mut afio.mapr, 10.khz())
.split();
pwm.enable();
// Setup timers
let tim1 = dp.TIM1;
TIM1::enable(&mut rcc.apb2);
TIM1::reset(&mut rcc.apb2);
// Enable external clocking
tim1.smcr.write(|w| {
w.etf().no_filter(); // No filter for to 10Mhz clock
w.etps().div1(); // No divider
w.etp().not_inverted(); // on rising edege at ETR pin
w.ece().enabled() // mode 2 (use ETR pin)
});
tim1.ccmr1_input().write(|w| {
w.cc1s().ti1(); // Input capture using T1 input
w.ic1f().no_filter() // No filter on input capture input
//w.ic1psc().bits(0) // Disable prescaler, not safely implement by HAL yet
});
tim1.ccer.write(|w| {
w.cc1p().set_bit(); // Use rising edge on TI
w.cc1e().set_bit() // Enable input capture
});
tim1.cr2.write(|w| {
w.mms().update() // Trigger output on update/overflow
});
// Counting up to 10^7 should need 24 bits
// Clock tim2 by tim1s overflow to make a 32bit timer
let tim2 = dp.TIM2;
TIM2::enable(&mut rcc.apb1);
TIM2::reset(&mut rcc.apb1);
tim2.smcr.write(|w| {
w.ts().itr0(); // Trigger from internal trigger 0
w.sms().ext_clock_mode() // Use trigger as clock
});
tim2.ccmr1_input().write(|w| {
w.cc1s().ti1(); // Input capture using T1 input
w.ic1f().no_filter() // No filter on input capture input
//w.ic1psc().bits(0) // Disable prescaler, not safely implement by HAL yet
});
tim2.ccer.write(|w| {
w.cc1p().set_bit(); // Use rising edge on TI
w.cc1e().set_bit() // Enable input capture
});
tim1.cr1.write(|w| w.cen().enabled());
tim2.cr1.write(|w| w.cen().enabled());
let mut delay = Delay::new(cp.SYST, clocks);
let mut last_ic = 0u32;
let mut avg = 10f64;
let max_pwm = pwm.get_max_duty() as u32;
let mut cur_pwm = 3000u32; //max_pwm / 2;
// Skip the first measurement, it will be garbage
while !tim1.sr.read().cc1if().bit_is_set() || !tim2.sr.read().cc1if().bit_is_set() {
delay.delay_ms(10u16);
}
let ic1 = tim1.ccr1.read().bits();
let ic2 = tim2.ccr1.read().bits();
last_ic = ic2 << 16 | ic1;
loop {
while !tim1.sr.read().cc1if().bit_is_set() || !tim2.sr.read().cc1if().bit_is_set() {
delay.delay_ms(10u16);
}
let ic1 = tim1.ccr1.read().bits();
let ic2 = tim2.ccr1.read().bits();
let sum_ic = ic2 << 16 | ic1;
let diff_ic = if sum_ic > last_ic {
sum_ic - last_ic
} else {
u32::MAX - last_ic + sum_ic
};
last_ic = sum_ic;
let freq = (diff_ic as f64) / 1_000_000f64;
let diff = freq - avg;
led.toggle().unwrap();
if diff > 0.000_100 || diff < -0.000_100 {
continue;
}
avg = avg * 0.999 + freq * 0.001;
cur_pwm = if 10_000_000 >= diff_ic {
cur_pwm + (10_000_000 - diff_ic)
} else {
cur_pwm - (diff_ic - 10_000_000)
};
cur_pwm = if cur_pwm > max_pwm { max_pwm } else { cur_pwm };
pwm.set_duty(cur_pwm as u16);
defmt::info!("ic1:\t{}", ic1);
defmt::info!("ic2:\t{}", ic2);
defmt::info!("sum_ic:\t{}", sum_ic);
defmt::info!("diff_ic:\t{}", diff_ic);
defmt::info!("freq:\t{} MHz", freq);
defmt::info!("avg:\t{} MHz", avg);
defmt::info!("pwm:\t{}", cur_pwm);
}
}