/* Common code for intializing a Reed-Solomon control block (char or int symbols) * Copyright 2004 Phil Karn, KA9Q * May be used under the terms of the GNU Lesser General Public License (LGPL) */ #undef NULL #define NULL ((void *)0) { int i, j, sr, root, iprim; rs = NULL; /* Check parameter ranges */ if (symsize < 0 || symsize > 8 * sizeof(data_t)) { goto done; } if (fcr < 0 || fcr >= (1 << symsize)) { goto done; } if (prim <= 0 || prim >= (1 << symsize)) { goto done; } if (nroots < 0 || nroots >= (1 << symsize)) { goto done; /* Can't have more roots than symbol values! */ } if (pad < 0 || pad >= ((1 << symsize) - 1 - nroots)) { goto done; /* Too much padding */ } rs = (struct rs *)calloc(1, sizeof(struct rs)); if (rs == NULL) { goto done; } rs->mm = symsize; rs->nn = (1 << symsize) - 1; rs->pad = pad; rs->alpha_to = (data_t *)malloc(sizeof(data_t) * (rs->nn + 1)); if (rs->alpha_to == NULL) { free(rs); rs = NULL; goto done; } rs->index_of = (data_t *)malloc(sizeof(data_t) * (rs->nn + 1)); if (rs->index_of == NULL) { free(rs->alpha_to); free(rs); rs = NULL; goto done; } /* Generate Galois field lookup tables */ rs->index_of[0] = A0; /* log(zero) = -inf */ rs->alpha_to[A0] = 0; /* alpha**-inf = 0 */ sr = 1; for (i = 0; i < rs->nn; i++) { rs->index_of[sr] = i; rs->alpha_to[i] = sr; sr <<= 1; if (sr & (1 << symsize)) { sr ^= gfpoly; } sr &= rs->nn; } if (sr != 1) { /* field generator polynomial is not primitive! */ free(rs->alpha_to); free(rs->index_of); free(rs); rs = NULL; goto done; } /* Form RS code generator polynomial from its roots */ rs->genpoly = (data_t *)malloc(sizeof(data_t) * (nroots + 1)); if (rs->genpoly == NULL) { free(rs->alpha_to); free(rs->index_of); free(rs); rs = NULL; goto done; } rs->fcr = fcr; rs->prim = prim; rs->nroots = nroots; /* Find prim-th root of 1, used in decoding */ for (iprim = 1; (iprim % prim) != 0; iprim += rs->nn) ; rs->iprim = iprim / prim; rs->genpoly[0] = 1; for (i = 0, root = fcr *prim; i < nroots; i++, root += prim) { rs->genpoly[i + 1] = 1; /* Multiply rs->genpoly[] by @**(root + x) */ for (j = i; j > 0; j--) { if (rs->genpoly[j] != 0) { rs->genpoly[j] = rs->genpoly[j - 1] ^ rs->alpha_to[modnn(rs, rs->index_of[rs->genpoly[j]] + root)]; } else { rs->genpoly[j] = rs->genpoly[j - 1]; } } /* rs->genpoly[0] can never be zero */ rs->genpoly[0] = rs->alpha_to[modnn(rs, rs->index_of[rs->genpoly[0]] + root)]; } /* convert rs->genpoly[] to index form for quicker encoding */ for (i = 0; i <= nroots; i++) { rs->genpoly[i] = rs->index_of[rs->genpoly[i]]; } done: ; }