use stm32f1xx_hal::{ delay::Delay, i2c, pac::Interrupt, prelude::*, serial::{Config, Serial}, stm32, timer::{Event, Timer}, }; use nmea0183::Parser; use crate::application::App; use crate::time; pub fn setup(cp: cortex_m::peripheral::Peripherals, dp: stm32::Peripherals) -> App { // Take ownership over the raw flash and rcc devices and convert them into the corresponding // HAL structs let mut flash = dp.FLASH.constrain(); let mut rcc = dp.RCC.constrain(); // Freeze the configuration of all the clocks in the system and store the frozen frequencies in // `clocks` let clocks = rcc .cfgr .use_hse(8.mhz()) .sysclk(72.mhz()) .pclk1(36.mhz()) .freeze(&mut flash.acr); defmt::info!("Clock Setup done"); // Acquire the GPIOC peripheral let mut gpiob = dp.GPIOB.split(&mut rcc.apb2); let mut gpioc = dp.GPIOC.split(&mut rcc.apb2); let mut afio = dp.AFIO.constrain(&mut rcc.apb2); let board_led = gpioc.pc13.into_push_pull_output(&mut gpioc.crh); let delay = Delay::new(cp.SYST, clocks); // USART3 // Configure pb10 as a push_pull output, this will be the tx pin let tx = gpiob.pb10.into_alternate_push_pull(&mut gpiob.crh); // Take ownership over pb11 let rx = gpiob.pb11; // Set up the usart device. Taks ownership over the USART register and tx/rx pins. The rest of // the registers are used to enable and configure the device. let serial = Serial::usart3( dp.USART3, (tx, rx), &mut afio.mapr, Config::default().baudrate(9600.bps()), clocks, &mut rcc.apb1, ); let gps_parser = Parser::new(); let scl = gpiob.pb6.into_alternate_open_drain(&mut gpiob.crl); let sda = gpiob.pb7.into_alternate_open_drain(&mut gpiob.crl); let mut i2c = i2c::BlockingI2c::i2c1( dp.I2C1, (scl, sda), &mut afio.mapr, i2c::Mode::Standard { frequency: 400_000.hz(), }, clocks, &mut rcc.apb1, 5, 1, 5, 5, ); time::setup(dp.TIM2, &clocks, &mut rcc.apb1); App { delay, board_led, serial, i2c, gps_parser, locator: arrayvec::ArrayString::new(), transmitting: false, } }