/* * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #pragma OPENCL EXTENSION cl_amd_media_ops2 : enable #pragma OPENCL EXTENSION cl_clang_storage_class_specifiers : enable #include "opencl/wolf-aes.cl" #include "opencl/wolf-skein.cl" #include "opencl/jh.cl" #include "opencl/blake256.cl" #include "opencl/groestl256.cl" static const __constant ulong keccakf_rndc[24] = { 0x0000000000000001, 0x0000000000008082, 0x800000000000808a, 0x8000000080008000, 0x000000000000808b, 0x0000000080000001, 0x8000000080008081, 0x8000000000008009, 0x000000000000008a, 0x0000000000000088, 0x0000000080008009, 0x000000008000000a, 0x000000008000808b, 0x800000000000008b, 0x8000000000008089, 0x8000000000008003, 0x8000000000008002, 0x8000000000000080, 0x000000000000800a, 0x800000008000000a, 0x8000000080008081, 0x8000000000008080, 0x0000000080000001, 0x8000000080008008 }; static const __constant uchar sbox[256] = { 0x63, 0x7C, 0x77, 0x7B, 0xF2, 0x6B, 0x6F, 0xC5, 0x30, 0x01, 0x67, 0x2B, 0xFE, 0xD7, 0xAB, 0x76, 0xCA, 0x82, 0xC9, 0x7D, 0xFA, 0x59, 0x47, 0xF0, 0xAD, 0xD4, 0xA2, 0xAF, 0x9C, 0xA4, 0x72, 0xC0, 0xB7, 0xFD, 0x93, 0x26, 0x36, 0x3F, 0xF7, 0xCC, 0x34, 0xA5, 0xE5, 0xF1, 0x71, 0xD8, 0x31, 0x15, 0x04, 0xC7, 0x23, 0xC3, 0x18, 0x96, 0x05, 0x9A, 0x07, 0x12, 0x80, 0xE2, 0xEB, 0x27, 0xB2, 0x75, 0x09, 0x83, 0x2C, 0x1A, 0x1B, 0x6E, 0x5A, 0xA0, 0x52, 0x3B, 0xD6, 0xB3, 0x29, 0xE3, 0x2F, 0x84, 0x53, 0xD1, 0x00, 0xED, 0x20, 0xFC, 0xB1, 0x5B, 0x6A, 0xCB, 0xBE, 0x39, 0x4A, 0x4C, 0x58, 0xCF, 0xD0, 0xEF, 0xAA, 0xFB, 0x43, 0x4D, 0x33, 0x85, 0x45, 0xF9, 0x02, 0x7F, 0x50, 0x3C, 0x9F, 0xA8, 0x51, 0xA3, 0x40, 0x8F, 0x92, 0x9D, 0x38, 0xF5, 0xBC, 0xB6, 0xDA, 0x21, 0x10, 0xFF, 0xF3, 0xD2, 0xCD, 0x0C, 0x13, 0xEC, 0x5F, 0x97, 0x44, 0x17, 0xC4, 0xA7, 0x7E, 0x3D, 0x64, 0x5D, 0x19, 0x73, 0x60, 0x81, 0x4F, 0xDC, 0x22, 0x2A, 0x90, 0x88, 0x46, 0xEE, 0xB8, 0x14, 0xDE, 0x5E, 0x0B, 0xDB, 0xE0, 0x32, 0x3A, 0x0A, 0x49, 0x06, 0x24, 0x5C, 0xC2, 0xD3, 0xAC, 0x62, 0x91, 0x95, 0xE4, 0x79, 0xE7, 0xC8, 0x37, 0x6D, 0x8D, 0xD5, 0x4E, 0xA9, 0x6C, 0x56, 0xF4, 0xEA, 0x65, 0x7A, 0xAE, 0x08, 0xBA, 0x78, 0x25, 0x2E, 0x1C, 0xA6, 0xB4, 0xC6, 0xE8, 0xDD, 0x74, 0x1F, 0x4B, 0xBD, 0x8B, 0x8A, 0x70, 0x3E, 0xB5, 0x66, 0x48, 0x03, 0xF6, 0x0E, 0x61, 0x35, 0x57, 0xB9, 0x86, 0xC1, 0x1D, 0x9E, 0xE1, 0xF8, 0x98, 0x11, 0x69, 0xD9, 0x8E, 0x94, 0x9B, 0x1E, 0x87, 0xE9, 0xCE, 0x55, 0x28, 0xDF, 0x8C, 0xA1, 0x89, 0x0D, 0xBF, 0xE6, 0x42, 0x68, 0x41, 0x99, 0x2D, 0x0F, 0xB0, 0x54, 0xBB, 0x16 }; void keccakf1600(ulong *s) { for(int i = 0; i < 24; ++i) { ulong bc[5], tmp1, tmp2; bc[0] = s[0] ^ s[5] ^ s[10] ^ s[15] ^ s[20] ^ rotate(s[2] ^ s[7] ^ s[12] ^ s[17] ^ s[22], 1UL); bc[1] = s[1] ^ s[6] ^ s[11] ^ s[16] ^ s[21] ^ rotate(s[3] ^ s[8] ^ s[13] ^ s[18] ^ s[23], 1UL); bc[2] = s[2] ^ s[7] ^ s[12] ^ s[17] ^ s[22] ^ rotate(s[4] ^ s[9] ^ s[14] ^ s[19] ^ s[24], 1UL); bc[3] = s[3] ^ s[8] ^ s[13] ^ s[18] ^ s[23] ^ rotate(s[0] ^ s[5] ^ s[10] ^ s[15] ^ s[20], 1UL); bc[4] = s[4] ^ s[9] ^ s[14] ^ s[19] ^ s[24] ^ rotate(s[1] ^ s[6] ^ s[11] ^ s[16] ^ s[21], 1UL); tmp1 = s[1] ^ bc[0]; s[0] ^= bc[4]; s[1] = rotate(s[6] ^ bc[0], 44UL); s[6] = rotate(s[9] ^ bc[3], 20UL); s[9] = rotate(s[22] ^ bc[1], 61UL); s[22] = rotate(s[14] ^ bc[3], 39UL); s[14] = rotate(s[20] ^ bc[4], 18UL); s[20] = rotate(s[2] ^ bc[1], 62UL); s[2] = rotate(s[12] ^ bc[1], 43UL); s[12] = rotate(s[13] ^ bc[2], 25UL); s[13] = rotate(s[19] ^ bc[3], 8UL); s[19] = rotate(s[23] ^ bc[2], 56UL); s[23] = rotate(s[15] ^ bc[4], 41UL); s[15] = rotate(s[4] ^ bc[3], 27UL); s[4] = rotate(s[24] ^ bc[3], 14UL); s[24] = rotate(s[21] ^ bc[0], 2UL); s[21] = rotate(s[8] ^ bc[2], 55UL); s[8] = rotate(s[16] ^ bc[0], 35UL); s[16] = rotate(s[5] ^ bc[4], 36UL); s[5] = rotate(s[3] ^ bc[2], 28UL); s[3] = rotate(s[18] ^ bc[2], 21UL); s[18] = rotate(s[17] ^ bc[1], 15UL); s[17] = rotate(s[11] ^ bc[0], 10UL); s[11] = rotate(s[7] ^ bc[1], 6UL); s[7] = rotate(s[10] ^ bc[4], 3UL); s[10] = rotate(tmp1, 1UL); tmp1 = s[0]; tmp2 = s[1]; s[0] = bitselect(s[0] ^ s[2], s[0], s[1]); s[1] = bitselect(s[1] ^ s[3], s[1], s[2]); s[2] = bitselect(s[2] ^ s[4], s[2], s[3]); s[3] = bitselect(s[3] ^ tmp1, s[3], s[4]); s[4] = bitselect(s[4] ^ tmp2, s[4], tmp1); tmp1 = s[5]; tmp2 = s[6]; s[5] = bitselect(s[5] ^ s[7], s[5], s[6]); s[6] = bitselect(s[6] ^ s[8], s[6], s[7]); s[7] = bitselect(s[7] ^ s[9], s[7], s[8]); s[8] = bitselect(s[8] ^ tmp1, s[8], s[9]); s[9] = bitselect(s[9] ^ tmp2, s[9], tmp1); tmp1 = s[10]; tmp2 = s[11]; s[10] = bitselect(s[10] ^ s[12], s[10], s[11]); s[11] = bitselect(s[11] ^ s[13], s[11], s[12]); s[12] = bitselect(s[12] ^ s[14], s[12], s[13]); s[13] = bitselect(s[13] ^ tmp1, s[13], s[14]); s[14] = bitselect(s[14] ^ tmp2, s[14], tmp1); tmp1 = s[15]; tmp2 = s[16]; s[15] = bitselect(s[15] ^ s[17], s[15], s[16]); s[16] = bitselect(s[16] ^ s[18], s[16], s[17]); s[17] = bitselect(s[17] ^ s[19], s[17], s[18]); s[18] = bitselect(s[18] ^ tmp1, s[18], s[19]); s[19] = bitselect(s[19] ^ tmp2, s[19], tmp1); tmp1 = s[20]; tmp2 = s[21]; s[20] = bitselect(s[20] ^ s[22], s[20], s[21]); s[21] = bitselect(s[21] ^ s[23], s[21], s[22]); s[22] = bitselect(s[22] ^ s[24], s[22], s[23]); s[23] = bitselect(s[23] ^ tmp1, s[23], s[24]); s[24] = bitselect(s[24] ^ tmp2, s[24], tmp1); s[0] ^= keccakf_rndc[i]; } } static const __constant uint keccakf_rotc[24] = { 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 2, 14, 27, 41, 56, 8, 25, 43, 62, 18, 39, 61, 20, 44 }; static const __constant uint keccakf_piln[24] = { 10, 7, 11, 17, 18, 3, 5, 16, 8, 21, 24, 4, 15, 23, 19, 13, 12, 2, 20, 14, 22, 9, 6, 1 }; void keccakf1600_1(ulong *st) { int i, round; ulong t, bc[5]; #pragma unroll 1 for(round = 0; round < 24; ++round) { // Theta bc[0] = st[0] ^ st[5] ^ st[10] ^ st[15] ^ st[20]; bc[1] = st[1] ^ st[6] ^ st[11] ^ st[16] ^ st[21]; bc[2] = st[2] ^ st[7] ^ st[12] ^ st[17] ^ st[22]; bc[3] = st[3] ^ st[8] ^ st[13] ^ st[18] ^ st[23]; bc[4] = st[4] ^ st[9] ^ st[14] ^ st[19] ^ st[24]; #pragma unroll 1 for (i = 0; i < 5; ++i) { t = bc[(i + 4) % 5] ^ rotate(bc[(i + 1) % 5], 1UL); st[i ] ^= t; st[i + 5] ^= t; st[i + 10] ^= t; st[i + 15] ^= t; st[i + 20] ^= t; } // Rho Pi t = st[1]; #pragma unroll for (i = 0; i < 24; ++i) { bc[0] = st[keccakf_piln[i]]; st[keccakf_piln[i]] = rotate(t, (ulong)keccakf_rotc[i]); t = bc[0]; } //ulong tmp1 = st[0]; ulong tmp2 = st[1]; st[0] = bitselect(st[0] ^ st[2], st[0], st[1]); st[1] = bitselect(st[1] ^ st[3], st[1], st[2]); st[2] = bitselect(st[2] ^ st[4], st[2], st[3]); st[3] = bitselect(st[3] ^ tmp1, st[3], st[4]); st[4] = bitselect(st[4] ^ tmp2, st[4], tmp1); //tmp1 = st[5]; tmp2 = st[6]; st[5] = bitselect(st[5] ^ st[7], st[5], st[6]); st[6] = bitselect(st[6] ^ st[8], st[6], st[7]); st[7] = bitselect(st[7] ^ st[9], st[7], st[8]); st[8] = bitselect(st[8] ^ tmp1, st[8], st[9]); st[9] = bitselect(st[9] ^ tmp2, st[9], tmp1); //tmp1 = st[10]; tmp2 = st[11]; st[10] = bitselect(st[10] ^ st[12], st[10], st[11]); st[11] = bitselect(st[11] ^ st[13], st[11], st[12]); st[12] = bitselect(st[12] ^ st[14], st[12], st[13]); st[13] = bitselect(st[13] ^ tmp1, st[13], st[14]); st[14] = bitselect(st[14] ^ tmp2, st[14], tmp1); //tmp1 = st[15]; tmp2 = st[16]; st[15] = bitselect(st[15] ^ st[17], st[15], st[16]); st[16] = bitselect(st[16] ^ st[18], st[16], st[17]); st[17] = bitselect(st[17] ^ st[19], st[17], st[18]); st[18] = bitselect(st[18] ^ tmp1, st[18], st[19]); st[19] = bitselect(st[19] ^ tmp2, st[19], tmp1); //tmp1 = st[20]; tmp2 = st[21]; st[20] = bitselect(st[20] ^ st[22], st[20], st[21]); st[21] = bitselect(st[21] ^ st[23], st[21], st[22]); st[22] = bitselect(st[22] ^ st[24], st[22], st[23]); st[23] = bitselect(st[23] ^ tmp1, st[23], st[24]); st[24] = bitselect(st[24] ^ tmp2, st[24], tmp1); #pragma unroll 1 for(int i = 0; i < 25; i += 5) { ulong tmp[5]; #pragma unroll 1 for(int x = 0; x < 5; ++x) tmp[x] = bitselect(st[i + x] ^ st[i + ((x + 2) % 5)], st[i + x], st[i + ((x + 1) % 5)]); #pragma unroll 1 for(int x = 0; x < 5; ++x) st[i + x] = tmp[x]; } // Iota st[0] ^= keccakf_rndc[round]; } } void keccakf1600_2(ulong *st) { int i, round; ulong t, bc[5]; #pragma unroll 1 for(round = 0; round < 24; ++round) { // Theta //bc[0] = st[0] ^ st[5] ^ st[10] ^ st[15] ^ st[20]; //bc[1] = st[1] ^ st[6] ^ st[11] ^ st[16] ^ st[21]; //bc[2] = st[2] ^ st[7] ^ st[12] ^ st[17] ^ st[22]; //bc[3] = st[3] ^ st[8] ^ st[13] ^ st[18] ^ st[23]; //bc[4] = st[4] ^ st[9] ^ st[14] ^ st[19] ^ st[24]; /* #pragma unroll for (i = 0; i < 5; ++i) { t = bc[(i + 4) % 5] ^ rotate(bc[(i + 1) % 5], 1UL); st[i ] ^= t; st[i + 5] ^= t; st[i + 10] ^= t; st[i + 15] ^= t; st[i + 20] ^= t; } */ bc[0] = st[0] ^ st[5] ^ st[10] ^ st[15] ^ st[20] ^ rotate(st[2] ^ st[7] ^ st[12] ^ st[17] ^ st[22], 1UL); bc[1] = st[1] ^ st[6] ^ st[11] ^ st[16] ^ st[21] ^ rotate(st[3] ^ st[8] ^ st[13] ^ st[18] ^ st[23], 1UL); bc[2] = st[2] ^ st[7] ^ st[12] ^ st[17] ^ st[22] ^ rotate(st[4] ^ st[9] ^ st[14] ^ st[19] ^ st[24], 1UL); bc[3] = st[3] ^ st[8] ^ st[13] ^ st[18] ^ st[23] ^ rotate(st[0] ^ st[5] ^ st[10] ^ st[15] ^ st[20], 1UL); bc[4] = st[4] ^ st[9] ^ st[14] ^ st[19] ^ st[24] ^ rotate(st[1] ^ st[6] ^ st[11] ^ st[16] ^ st[21], 1UL); st[0] ^= bc[4]; st[5] ^= bc[4]; st[10] ^= bc[4]; st[15] ^= bc[4]; st[20] ^= bc[4]; st[1] ^= bc[0]; st[6] ^= bc[0]; st[11] ^= bc[0]; st[16] ^= bc[0]; st[21] ^= bc[0]; st[2] ^= bc[1]; st[7] ^= bc[1]; st[12] ^= bc[1]; st[17] ^= bc[1]; st[22] ^= bc[1]; st[3] ^= bc[2]; st[8] ^= bc[2]; st[13] ^= bc[2]; st[18] ^= bc[2]; st[23] ^= bc[2]; st[4] ^= bc[3]; st[9] ^= bc[3]; st[14] ^= bc[3]; st[19] ^= bc[3]; st[24] ^= bc[3]; // Rho Pi t = st[1]; #pragma unroll for (i = 0; i < 24; ++i) { bc[0] = st[keccakf_piln[i]]; st[keccakf_piln[i]] = rotate(t, (ulong)keccakf_rotc[i]); t = bc[0]; } /*ulong tmp1 = st[1] ^ bc[0]; st[0] ^= bc[4]; st[1] = rotate(st[6] ^ bc[0], 44UL); st[6] = rotate(st[9] ^ bc[3], 20UL); st[9] = rotate(st[22] ^ bc[1], 61UL); st[22] = rotate(st[14] ^ bc[3], 39UL); st[14] = rotate(st[20] ^ bc[4], 18UL); st[20] = rotate(st[2] ^ bc[1], 62UL); st[2] = rotate(st[12] ^ bc[1], 43UL); st[12] = rotate(st[13] ^ bc[2], 25UL); st[13] = rotate(st[19] ^ bc[3], 8UL); st[19] = rotate(st[23] ^ bc[2], 56UL); st[23] = rotate(st[15] ^ bc[4], 41UL); st[15] = rotate(st[4] ^ bc[3], 27UL); st[4] = rotate(st[24] ^ bc[3], 14UL); st[24] = rotate(st[21] ^ bc[0], 2UL); st[21] = rotate(st[8] ^ bc[2], 55UL); st[8] = rotate(st[16] ^ bc[0], 35UL); st[16] = rotate(st[5] ^ bc[4], 36UL); st[5] = rotate(st[3] ^ bc[2], 28UL); st[3] = rotate(st[18] ^ bc[2], 21UL); st[18] = rotate(st[17] ^ bc[1], 15UL); st[17] = rotate(st[11] ^ bc[0], 10UL); st[11] = rotate(st[7] ^ bc[1], 6UL); st[7] = rotate(st[10] ^ bc[4], 3UL); st[10] = rotate(tmp1, 1UL); */ //ulong tmp1 = st[0]; ulong tmp2 = st[1]; st[0] = bitselect(st[0] ^ st[2], st[0], st[1]); st[1] = bitselect(st[1] ^ st[3], st[1], st[2]); st[2] = bitselect(st[2] ^ st[4], st[2], st[3]); st[3] = bitselect(st[3] ^ tmp1, st[3], st[4]); st[4] = bitselect(st[4] ^ tmp2, st[4], tmp1); //tmp1 = st[5]; tmp2 = st[6]; st[5] = bitselect(st[5] ^ st[7], st[5], st[6]); st[6] = bitselect(st[6] ^ st[8], st[6], st[7]); st[7] = bitselect(st[7] ^ st[9], st[7], st[8]); st[8] = bitselect(st[8] ^ tmp1, st[8], st[9]); st[9] = bitselect(st[9] ^ tmp2, st[9], tmp1); //tmp1 = st[10]; tmp2 = st[11]; st[10] = bitselect(st[10] ^ st[12], st[10], st[11]); st[11] = bitselect(st[11] ^ st[13], st[11], st[12]); st[12] = bitselect(st[12] ^ st[14], st[12], st[13]); st[13] = bitselect(st[13] ^ tmp1, st[13], st[14]); st[14] = bitselect(st[14] ^ tmp2, st[14], tmp1); //tmp1 = st[15]; tmp2 = st[16]; st[15] = bitselect(st[15] ^ st[17], st[15], st[16]); st[16] = bitselect(st[16] ^ st[18], st[16], st[17]); st[17] = bitselect(st[17] ^ st[19], st[17], st[18]); st[18] = bitselect(st[18] ^ tmp1, st[18], st[19]); st[19] = bitselect(st[19] ^ tmp2, st[19], tmp1); //tmp1 = st[20]; tmp2 = st[21]; st[20] = bitselect(st[20] ^ st[22], st[20], st[21]); st[21] = bitselect(st[21] ^ st[23], st[21], st[22]); st[22] = bitselect(st[22] ^ st[24], st[22], st[23]); st[23] = bitselect(st[23] ^ tmp1, st[23], st[24]); st[24] = bitselect(st[24] ^ tmp2, st[24], tmp1); #pragma unroll for(int i = 0; i < 25; i += 5) { ulong tmp1 = st[i], tmp2 = st[i + 1]; st[i] = bitselect(st[i] ^ st[i + 2], st[i], st[i + 1]); st[i + 1] = bitselect(st[i + 1] ^ st[i + 3], st[i + 1], st[i + 2]); st[i + 2] = bitselect(st[i + 2] ^ st[i + 4], st[i + 2], st[i + 3]); st[i + 3] = bitselect(st[i + 3] ^ tmp1, st[i + 3], st[i + 4]); st[i + 4] = bitselect(st[i + 4] ^ tmp2, st[i + 4], tmp1); } // Iota st[0] ^= keccakf_rndc[round]; } } void CNKeccak(ulong *output, ulong *input) { ulong st[25]; // Copy 72 bytes for(int i = 0; i < 9; ++i) st[i] = input[i]; // Last four and '1' bit for padding //st[9] = as_ulong((uint2)(((uint *)input)[18], 0x00000001U)); st[9] = (input[9] & 0x00000000FFFFFFFFUL) | 0x0000000100000000UL; for(int i = 10; i < 25; ++i) st[i] = 0x00UL; // Last bit of padding st[16] = 0x8000000000000000UL; keccakf1600_1(st); for(int i = 0; i < 25; ++i) output[i] = st[i]; } static const __constant uchar rcon[8] = { 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40 }; #pragma OPENCL EXTENSION cl_amd_media_ops2 : enable #define BYTE(x, y) (amd_bfe((x), (y) << 3U, 8U)) #define SubWord(inw) ((sbox[BYTE(inw, 3)] << 24) | (sbox[BYTE(inw, 2)] << 16) | (sbox[BYTE(inw, 1)] << 8) | sbox[BYTE(inw, 0)]) void AESExpandKey256(uint *keybuf) { //#pragma unroll 4 for(uint c = 8, i = 1; c < 60; ++c) { // For 256-bit keys, an sbox permutation is done every other 4th uint generated, AND every 8th uint t = ((!(c & 7)) || ((c & 7) == 4)) ? SubWord(keybuf[c - 1]) : keybuf[c - 1]; // If the uint we're generating has an index that is a multiple of 8, rotate and XOR with the round constant, // then XOR this with previously generated uint. If it's 4 after a multiple of 8, only the sbox permutation // is done, followed by the XOR. If neither are true, only the XOR with the previously generated uint is done. keybuf[c] = keybuf[c - 8] ^ ((!(c & 7)) ? rotate(t, 24U) ^ as_uint((uchar4)(rcon[i++], 0U, 0U, 0U)) : t); } } #define IDX(x) (x) __attribute__((reqd_work_group_size(WORKSIZE, 8, 1))) __kernel void cn0(__global ulong *input, __global uint4 *Scratchpad, __global ulong *states) { ulong State[25]; uint ExpandedKey1[256]; __local uint AES0[256], AES1[256], AES2[256], AES3[256]; uint4 text; states += (25 * (get_global_id(0) - get_global_offset(0))); Scratchpad += ((get_global_id(0) - get_global_offset(0))) * (0x80000 >> 2); for(int i = get_local_id(0); i < 256; i += WORKSIZE) { const uint tmp = AES0_C[i]; AES0[i] = tmp; AES1[i] = rotate(tmp, 8U); AES2[i] = rotate(tmp, 16U); AES3[i] = rotate(tmp, 24U); } barrier(CLK_LOCAL_MEM_FENCE); ((ulong8 *)State)[0] = vload8(0, input); State[8] = input[8]; State[9] = input[9]; State[10] = input[10]; ((uint *)State)[9] &= 0x00FFFFFFU; ((uint *)State)[9] |= ((get_global_id(0)) & 0xFF) << 24; ((uint *)State)[10] &= 0xFF000000U; ((uint *)State)[10] |= ((get_global_id(0) >> 8)); for(int i = 11; i < 25; ++i) State[i] = 0x00UL; // Last bit of padding State[16] = 0x8000000000000000UL; keccakf1600_2(State); mem_fence(CLK_GLOBAL_MEM_FENCE); #pragma unroll for(int i = 0; i < 25; ++i) states[i] = State[i]; text = vload4(get_local_id(1) + 4, (__global uint *)(states)); #pragma unroll for(int i = 0; i < 4; ++i) ((ulong *)ExpandedKey1)[i] = states[i]; AESExpandKey256(ExpandedKey1); mem_fence(CLK_LOCAL_MEM_FENCE); #pragma unroll 2 for(int i = 0; i < 0x4000; ++i) { #pragma unroll for(int j = 0; j < 10; ++j) text = AES_Round(AES0, AES1, AES2, AES3, text, ((uint4 *)ExpandedKey1)[j]); Scratchpad[IDX((i << 3) + get_local_id(1))] = text; } mem_fence(CLK_GLOBAL_MEM_FENCE); } __attribute__((reqd_work_group_size(WORKSIZE, 1, 1))) __kernel void cn1(__global uint4 *Scratchpad, __global ulong *states) { ulong a[2], b[2]; __local uint AES0[256], AES1[256], AES2[256], AES3[256]; Scratchpad += ((get_global_id(0) - get_global_offset(0))) * (0x80000 >> 2); states += (25 * (get_global_id(0) - get_global_offset(0))); for(int i = get_local_id(0); i < 256; i += WORKSIZE) { const uint tmp = AES0_C[i]; AES0[i] = tmp; AES1[i] = rotate(tmp, 8U); AES2[i] = rotate(tmp, 16U); AES3[i] = rotate(tmp, 24U); } barrier(CLK_LOCAL_MEM_FENCE); a[0] = states[0] ^ states[4]; b[0] = states[2] ^ states[6]; a[1] = states[1] ^ states[5]; b[1] = states[3] ^ states[7]; uint4 b_x = ((uint4 *)b)[0]; mem_fence(CLK_LOCAL_MEM_FENCE); #pragma unroll 8 for(int i = 0; i < 0x80000; ++i) { ulong c[2]; ((uint4 *)c)[0] = Scratchpad[IDX((a[0] & 0x1FFFF0) >> 4)]; ((uint4 *)c)[0] = AES_Round(AES0, AES1, AES2, AES3, ((uint4 *)c)[0], ((uint4 *)a)[0]); //b_x ^= ((uint4 *)c)[0]; Scratchpad[IDX((a[0] & 0x1FFFF0) >> 4)] = b_x ^ ((uint4 *)c)[0]; uint4 tmp; tmp = Scratchpad[IDX((c[0] & 0x1FFFF0) >> 4)]; a[1] += c[0] * as_ulong2(tmp).s0; a[0] += mul_hi(c[0], as_ulong2(tmp).s0); Scratchpad[IDX((c[0] & 0x1FFFF0) >> 4)] = ((uint4 *)a)[0]; ((uint4 *)a)[0] ^= tmp; b_x = ((uint4 *)c)[0]; } mem_fence(CLK_GLOBAL_MEM_FENCE); } __attribute__((reqd_work_group_size(WORKSIZE, 8, 1))) __kernel void cn2(__global uint4 *Scratchpad, __global ulong *states, __global uint *Branch0, __global uint *Branch1, __global uint *Branch2, __global uint *Branch3) { __local uint AES0[256], AES1[256], AES2[256], AES3[256]; uint ExpandedKey2[256]; ulong State[25]; uint4 text; Scratchpad += ((get_global_id(0) - get_global_offset(0))) * (0x80000 >> 2); states += (25 * (get_global_id(0) - get_global_offset(0))); for(int i = get_local_id(0); i < 256; i += WORKSIZE) { const uint tmp = AES0_C[i]; AES0[i] = tmp; AES1[i] = rotate(tmp, 8U); AES2[i] = rotate(tmp, 16U); AES3[i] = rotate(tmp, 24U); } barrier(CLK_LOCAL_MEM_FENCE); #if defined(__Tahiti__) || defined(__Pitcairn__) for(int i = 0; i < 4; ++i) ((ulong *)ExpandedKey2)[i] = states[i + 4]; text = vload4(get_local_id(1) + 4, (__global uint *)states); #else text = vload4(get_local_id(1) + 4, (__global uint *)states); ((uint8 *)ExpandedKey2)[0] = vload8(1, (__global uint *)states); #endif AESExpandKey256(ExpandedKey2); barrier(CLK_LOCAL_MEM_FENCE); #pragma unroll 2 for(int i = 0; i < 0x4000; ++i) { text ^= Scratchpad[IDX((i << 3) + get_local_id(1))]; #pragma unroll for(int j = 0; j < 10; ++j) text = AES_Round(AES0, AES1, AES2, AES3, text, ((uint4 *)ExpandedKey2)[j]); } vstore2(as_ulong2(text), get_local_id(1) + 4, states); barrier(CLK_GLOBAL_MEM_FENCE); if(!get_local_id(1)) { for(int i = 0; i < 25; ++i) State[i] = states[i]; keccakf1600_2(State); for(int i = 0; i < 25; ++i) states[i] = State[i]; switch(State[0] & 3) { case 0: Branch0[atomic_inc(Branch0 + get_global_size(0))] = get_global_id(0) - get_global_offset(0); break; case 1: Branch1[atomic_inc(Branch1 + get_global_size(0))] = get_global_id(0) - get_global_offset(0); break; case 2: Branch2[atomic_inc(Branch2 + get_global_size(0))] = get_global_id(0) - get_global_offset(0); break; case 3: Branch3[atomic_inc(Branch3 + get_global_size(0))] = get_global_id(0) - get_global_offset(0); break; } } mem_fence(CLK_GLOBAL_MEM_FENCE); } /* __kernel void cryptonight(__global ulong *input, __global uint4 *Scratchpad, __global ulong *states, __global uint *Branch0, __global uint *Branch1, __global uint *Branch2, __global uint *Branch3, ulong ThreadCount) { uchar State[200]; __local uint AES0[256], AES1[256], AES2[256], AES3[256]; uchar ExpandedKey1[256], ExpandedKey2[256]; ulong inbuf[10], a[2], b[2]; uint4 text[8]; for(int i = 0; i < 256; ++i) { const uint tmp = AES0_C[i]; AES0[i] = tmp; AES1[i] = rotate(tmp, 8U); AES2[i] = rotate(tmp, 16U); AES3[i] = rotate(tmp, 24U); } ((ulong8 *)inbuf)[0] = vload8(0, input); inbuf[8] = input[8]; inbuf[9] = (ulong)((__global uint *)input)[18]; ((uint *)(((uchar *)inbuf) + 39))[0] = get_global_id(0); CNKeccak((ulong *)State, inbuf); a[0] = ((ulong *)State)[0] ^ ((ulong *)State)[4]; b[0] = ((ulong *)State)[2] ^ ((ulong *)State)[6]; a[1] = ((ulong *)State)[1] ^ ((ulong *)State)[5]; b[1] = ((ulong *)State)[3] ^ ((ulong *)State)[7]; for(uint i = 0; i < 8; ++i) text[i] = vload4(i + 4, (uint *)(State)); for(int i = 0; i < 4; ++i) ((ulong *)ExpandedKey1)[i] = ((ulong *)State)[i]; for(int i = 0; i < 4; ++i) ((ulong *)ExpandedKey2)[i] = ((ulong *)State)[i + 4]; AESExpandKey256(ExpandedKey1); AESExpandKey256(ExpandedKey2); mem_fence(CLK_LOCAL_MEM_FENCE); Scratchpad += ((1 << 17) * (get_global_id(0) - get_global_offset(0))); //#pragma unroll 1 for(int i = 0; i < (1 << 17); i += 8) { #pragma unroll for(int j = 0; j < 10; ++j) { #pragma unroll for(int x = 0; x < 8; ++x) text[x] = AES_Round(AES0, AES1, AES2, AES3, text[x], ((uint4 *)ExpandedKey1)[j]); } for(int j = 0; j < 8; ++j) *(Scratchpad + i + j) = text[j]; } uint4 b_x = ((uint4 *)b)[0]; //#pragma unroll 1 for(int i = 0; i < 0x80000; ++i) { ulong c[2]; ((uint4 *)c)[0] = Scratchpad[(a[0] & 0x1FFFF0) >> 4]; ((uint4 *)c)[0] = AES_Round(AES0, AES1, AES2, AES3, ((uint4 *)c)[0], ((uint4 *)a)[0]); b_x ^= ((uint4 *)c)[0]; Scratchpad[(a[0] & 0x1FFFF0) >> 4] = b_x; uint4 tmp; tmp = Scratchpad[(c[0] & 0x1FFFF0) >> 4]; a[1] += c[0] * as_ulong2(tmp).s0; a[0] += mul_hi(c[0], as_ulong2(tmp).s0); Scratchpad[(c[0] & 0x1FFFF0) >> 4] = ((uint4 *)a)[0]; ((uint4 *)a)[0] ^= tmp; b_x = ((uint4 *)c)[0]; } for(uint i = 0; i < 8; ++i) text[i] = vload4(i + 4, (uint *)(State)); for(int i = 0; i < (1 << 17); i += 8) { #pragma unroll for(int j = 0; j < 8; ++j) text[j] ^= Scratchpad[i + j]; #pragma unroll 1 for(int j = 0; j < 10; ++j) { #pragma unroll for(int x = 0; x < 8; ++x) text[x] = AES_Round(AES0, AES1, AES2, AES3, text[x], ((uint4 *)ExpandedKey2)[j]); } } for(uint i = 0; i < 8; ++i) vstore4(text[i], i + 4, (uint *)(State)); keccakf1600((ulong *)State); states += (25 * (get_global_id(0) - get_global_offset(0))); for(int i = 0; i < 25; ++i) states[i] = ((ulong *)State)[i]; switch(State[0] & 3) { case 0: Branch0[atomic_inc(Branch0 + ThreadCount)] = get_global_id(0) - get_global_offset(0); break; case 1: Branch1[atomic_inc(Branch1 + ThreadCount)] = get_global_id(0) - get_global_offset(0); break; case 2: Branch2[atomic_inc(Branch2 + ThreadCount)] = get_global_id(0) - get_global_offset(0); break; case 3: Branch3[atomic_inc(Branch3 + ThreadCount)] = get_global_id(0) - get_global_offset(0); break; } } */ #define VSWAP8(x) (((x) >> 56) | (((x) >> 40) & 0x000000000000FF00UL) | (((x) >> 24) & 0x0000000000FF0000UL) \ | (((x) >> 8) & 0x00000000FF000000UL) | (((x) << 8) & 0x000000FF00000000UL) \ | (((x) << 24) & 0x0000FF0000000000UL) | (((x) << 40) & 0x00FF000000000000UL) | (((x) << 56) & 0xFF00000000000000UL)) #define VSWAP4(x) ((((x) >> 24) & 0xFFU) | (((x) >> 8) & 0xFF00U) | (((x) << 8) & 0xFF0000U) | (((x) << 24) & 0xFF000000U)) __kernel void Skein(__global ulong *states, __global uint *BranchBuf, __global uint *output, uint Target, ulong Threads) { const ulong idx = get_global_id(0) - get_global_offset(0); if(idx >= Threads) return; states += 25 * BranchBuf[idx]; // skein ulong8 h = vload8(0, SKEIN512_256_IV); // Type field begins with final bit, first bit, then six bits of type; the last 96 // bits are input processed (including in the block to be processed with that tweak) // The output transform is only one run of UBI, since we need only 256 bits of output // The tweak for the output transform is Type = Output with the Final bit set // T[0] for the output is 8, and I don't know why - should be message size... ulong t[3] = { 0x00UL, 0x7000000000000000UL, 0x00UL }; ulong8 p, m; for(uint i = 0; i < 4; ++i) { if(i < 3) t[0] += 0x40UL; else t[0] += 0x08UL; t[2] = t[0] ^ t[1]; m = (i < 3) ? vload8(i, states) : (ulong8)(states[24], 0UL, 0UL, 0UL, 0UL, 0UL, 0UL, 0UL); const ulong h8 = h.s0 ^ h.s1 ^ h.s2 ^ h.s3 ^ h.s4 ^ h.s5 ^ h.s6 ^ h.s7 ^ SKEIN_KS_PARITY; p = Skein512Block(m, h, h8, t); h = m ^ p; if(i < 2) t[1] = 0x3000000000000000UL; else t[1] = 0xB000000000000000UL; } t[0] = 0x08UL; t[1] = 0xFF00000000000000UL; t[2] = t[0] ^ t[1]; p = (ulong8)(0); const ulong h8 = h.s0 ^ h.s1 ^ h.s2 ^ h.s3 ^ h.s4 ^ h.s5 ^ h.s6 ^ h.s7 ^ SKEIN_KS_PARITY; p = Skein512Block(p, h, h8, t); //vstore8(p, 0, output); if(as_uint16(p).s7 <= Target) output[atomic_inc(output + 0xFF)] = BranchBuf[idx] + get_global_offset(0); mem_fence(CLK_GLOBAL_MEM_FENCE); } #define SWAP8(x) as_ulong(as_uchar8(x).s76543210) __kernel void JH(__global ulong *states, __global uint *BranchBuf, __global uint *output, uint Target, ulong Threads) { const uint idx = get_global_id(0) - get_global_offset(0); if(idx >= Threads) return; states += 25 * BranchBuf[idx]; sph_u64 h0h = 0xEBD3202C41A398EBUL, h0l = 0xC145B29C7BBECD92UL, h1h = 0xFAC7D4609151931CUL, h1l = 0x038A507ED6820026UL, h2h = 0x45B92677269E23A4UL, h2l = 0x77941AD4481AFBE0UL, h3h = 0x7A176B0226ABB5CDUL, h3l = 0xA82FFF0F4224F056UL; sph_u64 h4h = 0x754D2E7F8996A371UL, h4l = 0x62E27DF70849141DUL, h5h = 0x948F2476F7957627UL, h5l = 0x6C29804757B6D587UL, h6h = 0x6C0D8EAC2D275E5CUL, h6l = 0x0F7A0557C6508451UL, h7h = 0xEA12247067D3E47BUL, h7l = 0x69D71CD313ABE389UL; sph_u64 tmp; for(int i = 0; i < 5; ++i) { ulong input[8]; if(i < 3) { for(int x = 0; x < 8; ++x) input[x] = (states[(i << 3) + x]); } else if(i == 3) { input[0] = (states[24]); input[1] = 0x80UL; for(int x = 2; x < 8; ++x) input[x] = 0x00UL; } else { input[7] = 0x4006000000000000UL; for(int x = 0; x < 7; ++x) input[x] = 0x00UL; } h0h ^= input[0]; h0l ^= input[1]; h1h ^= input[2]; h1l ^= input[3]; h2h ^= input[4]; h2l ^= input[5]; h3h ^= input[6]; h3l ^= input[7]; E8; h4h ^= input[0]; h4l ^= input[1]; h5h ^= input[2]; h5l ^= input[3]; h6h ^= input[4]; h6l ^= input[5]; h7h ^= input[6]; h7l ^= input[7]; } //output[0] = h6h; //output[1] = h6l; //output[2] = h7h; //output[3] = h7l; if(as_uint2(h7l).s1 <= Target) output[atomic_inc(output + 0xFF)] = BranchBuf[idx] + get_global_offset(0); } #define SWAP4(x) as_uint(as_uchar4(x).s3210) __kernel void Blake(__global ulong *states, __global uint *BranchBuf, __global uint *output, uint Target, ulong Threads) { const uint idx = get_global_id(0) - get_global_offset(0); if(idx >= Threads) return; states += 25 * BranchBuf[idx]; unsigned int m[16]; unsigned int v[16]; uint h[8]; ((uint8 *)h)[0] = vload8(0U, c_IV256); for(uint i = 0, bitlen = 0; i < 4; ++i) { if(i < 3) { ((uint16 *)m)[0] = vload16(i, (__global uint *)states); for(int i = 0; i < 16; ++i) m[i] = SWAP4(m[i]); bitlen += 512; } else { m[0] = SWAP4(((__global uint *)states)[48]); m[1] = SWAP4(((__global uint *)states)[49]); m[2] = 0x80000000U; for(int i = 3; i < 13; ++i) m[i] = 0x00U; m[13] = 1U; m[14] = 0U; m[15] = 0x640; bitlen += 64; } ((uint16 *)v)[0].lo = ((uint8 *)h)[0]; ((uint16 *)v)[0].hi = vload8(0U, c_u256); //v[12] ^= (i < 3) ? (i + 1) << 9 : 1600U; //v[13] ^= (i < 3) ? (i + 1) << 9 : 1600U; v[12] ^= bitlen; v[13] ^= bitlen; for(int r = 0; r < 14; r++) { GS(0, 4, 0x8, 0xC, 0x0); GS(1, 5, 0x9, 0xD, 0x2); GS(2, 6, 0xA, 0xE, 0x4); GS(3, 7, 0xB, 0xF, 0x6); GS(0, 5, 0xA, 0xF, 0x8); GS(1, 6, 0xB, 0xC, 0xA); GS(2, 7, 0x8, 0xD, 0xC); GS(3, 4, 0x9, 0xE, 0xE); } ((uint8 *)h)[0] ^= ((uint8 *)v)[0] ^ ((uint8 *)v)[1]; } for(int i = 0; i < 8; ++i) h[i] = SWAP4(h[i]); //for(int i = 0; i < 4; ++i) output[i] = ((ulong *)h)[i]; if(h[7] <= Target) output[atomic_inc(output + 0xFF)] = BranchBuf[idx] + get_global_offset(0); } __kernel void Groestl(__global ulong *states, __global uint *BranchBuf, __global uint *output, uint Target, ulong Threads) { const uint idx = get_global_id(0) - get_global_offset(0); if(idx >= Threads) return; states += 25 * BranchBuf[idx]; ulong State[8]; for(int i = 0; i < 7; ++i) State[i] = 0UL; State[7] = 0x0001000000000000UL; for(uint i = 0; i < 4; ++i) { ulong H[8], M[8]; if(i < 3) { ((ulong8 *)M)[0] = vload8(i, states); } else { M[0] = states[24]; M[1] = 0x80UL; for(int x = 2; x < 7; ++x) M[x] = 0UL; M[7] = 0x0400000000000000UL; } for(int x = 0; x < 8; ++x) H[x] = M[x] ^ State[x]; PERM_SMALL_P(H); PERM_SMALL_Q(M); for(int x = 0; x < 8; ++x) State[x] ^= H[x] ^ M[x]; } ulong tmp[8]; for(int i = 0; i < 8; ++i) tmp[i] = State[i]; PERM_SMALL_P(State); for(int i = 0; i < 8; ++i) State[i] ^= tmp[i]; //for(int i = 0; i < 4; ++i) output[i] = State[i + 4]; if(as_uint2(State[7]).s1 <= Target) output[atomic_inc(output + 0xFF)] = BranchBuf[idx] + get_global_offset(0); }